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FJlMMARY: 
allows plant  perturbations t o  go unchecked as long as they are within some 
bounding bypersurface i n  perturbed s t a t e  space. 
represents some l i m i t  on acceptable plant perturbations.  When a perturbed 
state a t t a ins  the hypersurface a l inear  feedback control  i s  in i t i a t ed ,  
optimally driving the  s t a t e  back toward the  or igin for a f ixed amount of 
time with a f ixed amount of control energy. A t  control  shutdown there  
exists some residual  perturbation and the mode of operation continues. 

A regulator f o r  l i nea r  plants i s  proposed whose mode-of operation 

This bounding hypersurface 

A conventional solution fo r  the optimal control f o r  each operation 
leads t o  an equation f o r  an undetermined mul t ip l ie r  which depends on the 
i n i t i a l  phase of the plant.  With the  above mode of operation the  i n i t i a l  
phase i s  not known a p r i o r i  so t h a t  aa on-line solution t o  the mult ipl ier  
equation i s  necessary t o  specify the  control p r io r  t o  each operation. It 
i s  shown i n  this paper how t h i s  requirement may be avoided by in te rpre t ing  
the mult ipl ier  equation geometrically as a family of hypersurfaces i n  state 
space. 
required i n  the  mode of operation, the optimal control l a w  may be specif ied 
before the regulator i s  put i n to  service. 
applied t o  a l i nea r  o sc i l l a to r  a r e  given t o  i l l u s t r a t e  i t s  mode of 
operat ion. 

By u t i l i z i n g  one of these hypersurfaces as the  bounding hypersurface 

The results of the  regulator 

/.J% 
PROBLEM S W w  i s  i n i t i a t e d  and operates f o r  a f ixed  

amount of t i m e ,  
perturbed s t a t e  back toward the or igin.  

regulator 's  cycle repeats. This paper 
deals with the control and the  bounding 
hypersurface which determines the  i n i t i a l  
phase (xg, t o )  fo r  each operation. 

ti - to, t o  drive the  
The system considered may be w i t t e n  

i n  vector-matrix notation A t  tl the  control  i s  shut down and the  

(1) (. =&) d = F ( t ) x  + G(t)u 

where x& is  t h e  plant  perturbation 
from equilibrium and U E ~  i s  the con- The control i s  t o  be designed so  that 
t r o l .  
p l e t e ly  controllable.  e r ro r  c r i t e r ion  

me system i s  assumed t o  be corn- fo r  each Operation it (1) minimizes the  

allows The p lan t  regulator 's  perturbations mode of due operation t o  dis- 
J = $ ~ ~ X ( t l ) ~ ~ , ~  + ; s,9~lx(t)l l ;( t)  at turbances and possibly plant  i n s t a b i l i t y  

with no control act ion as long as they 
are within some bounding hypersurface i n  
perturbed state space. This bounding 
hypersurface represents the  l imit ing 

men a 
surface,  say a t  t i m e  t o ,  the control 

(2)  

where A and Q(t) a r e  f i n i t e  symmetric 

one of which i s  posi t ive def in i te  and 

Q(t)eC2 f o r  a l l  t e L o , t l ]  and (ii) 

value of acceptable p lan t  perturbations.  definite matrices at least 
attains t h i s  hyper- 



. 
ti.'-- 

u t i l i z e s  a 

where R ( t )  i s  a symmetric posi t ive 
def ini te  matrix and R(t)eC2 f o r  a l l  
t e  to,tl . The design admits plant  per- 

turbations a t  shutdown and the  control 
energy, E, may therefore be specified 
l e s s  than the m i n i m  energy required t o  
get t o  the  origin.  
avoids an unbounded control and other 
associated problems. The minimum 
energy, Eo, i s  given by 

C I  

This procedure 

where W ( t o , t l )  i s  the  con t ro l l ab i l i t y  
matrix.l  The bounding hypersurface 
must, therefore, be such t h a t  (i) it 
l i e s  within t h e  hypersurface defined by 
t h e  equation 

and t h a t  (ii) a l l  perturbations within 
and on the  bounding hypersurface a re  
acceptable. Requirement (ii) depends 
on the  accuracy with which the  l i nea r  
equations represent t h e  physical system 
as w e l l  a s  t he  designer's needs. 

SOLUTION FOR TKE CONTROL 

The f i r s t  step i s  t o  adjoin ( 3 )  t o  
(2)  with a constant posi t ive real 
Lagrange multiplier t o  give a s  the 
adjoined cr i ter ion 

< 
A s  i n  reference 2 the  conjugate variable 
i s  denoted CeRn and the  Hamiltonian i s  Y 

written 

., 

+ 25 - [F(t)x + G(t)d 
\ 

The Hamiltonian i s  then minimized w i t h  
respect t o  u t o  give a s  the optimal 
control function 

u o ( t )  = - 1 A R - l ( t ) G ' ( t ) ! ( t )  ( 8 )  

where i s  r e l a t ed  t o  the  system 
through the canonic equations 

- -  

This set of equations have the  boundary 
conditions 2 

4 t O )  = xo (10) 

S(t1)  = A d t l )  (11) 

To solve f o r  k ( t )  l e t  

set of solutions t o  (9 )  such t h a t  

11 
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I . 
A 

P E ( t )  = Z ( t , t l ) X ( t l )  (15) 

I n  reference 2 X ( t , t l )  i s  shown t o  be 
the fundamental matrix of the  optimally 
controlled plant .  Then with the energy 
level ,  E, chosen such that x ( t l )  # 0, 

X - l ( t , t l )  ex i s t s  f o r  a l l  t E E o , t d  

and e ( t )  may be wri t ten 

I E ( t )  = E(t , t l )X- ' ( t , t l )x( t )  (16) 

Equations (16) and (8) give f o r  the 
optimal control 

KO( t ,x) = - 1 R - l (  t )G' ( t )Z(  t ,t l )X- ' (  t , t l ) x  
h 

I (17) 

where e ( t , x )  replaces uo ( t )  t o  
denote optimal feedback control. h has 
ye t  t o  be determined; however, we may 
examine i t s  re la t ion  t o  the specif ic  

ti - to, and the system dynamics. 

\ 
I energy leve l ,  E ,  the  f ixed t i m e ,  

/ 

Substi tution of (15) i n t o  (8) gives 
the control i n  terms of the terminal 
s t a t e .  This then may be subst i tuted 
i n t o  (3) t o  give as the  constraint  
equation 

where 

X G ' ( t )=( t ,ti) d t  (19) 

Then by u t i l i z i n g  (14) i n  (18), the 
f ina l  form of the  energy constraint  
equation i s  

E = IIxoII: 

where 

Mow the standard solut ion t o  the  
problem would require the  solution of 
(20)  for  a posi t ive r e a l  d t i p l i e r  
p r io r  t o  each operation since from (20) 
and (21) it i s  clear  t ha t ,  i n  general, 
h i s  a function of the  i n i t i a l  phase 
(xo, to) .  To t h i s  end an analog method 
f o r  continuously tracking the  mult ipl ier  
as a function of the phase f o r  the  case 
when Q(t) = 0 i s  essent ia l ly  given i n  
reference 3. A method w i l l  now be shown 
whereby the  on-line tracking or  computing 
of h can be avoided by employing the 
aforementioned concept of a bounding 
hypersurface. 

THE BOUNDING HYPERSUHFACE 

The regulator 's  mode of operation 
requires that some act ivat ion c r i t e r ion  
be used t o  begin each control operation. 
I n  v i e w  of t h i s ,  it is  noted t h a t  f o r  
each t o  and with h as a parameter, 
( 2 0 )  defines a family of hypersurfaces 
i n  state space from which the  optimal 
control associated with h w i l l  use E 
amount of energy. If, f o r  each to, 
there  i s  a member of this family sui table  
f o r  a bounding hypersurface, then by 
using these hypersurfaces t o  define a 
bounding hypersurface varying with to, 
the  on-line computation of A ( t 0 )  may 
be avoided. 

The method of using this act ivat ion 
c r i t e r ion  i s  t o  feed back the  s t a t e  with 
time varying gains t o  form 

As long as e i s  less than E the  con- 
t r o l r e m i n s  of f ,  but when e equals E 
t he  control i s  i n i t i a t e d  and the optimal 
feedback control law associated with the  
h( to)  i s  used. O f  course, fo r  t i m e  
constant systems there  will only be one 
h 
be t i m e  varying. 

so the bounding hypersurface w i l l  not 



It should be pointed out t h a t  (18) 
i s  a d i r ec t  indication of t he  effect ive-  
ness of the system design since f o r  
each to it defines the  hypersurface 
t o  which the control will drive the  
s t a t e .  

A SIMPLF: EXAMPLE 

I n  t h e  i n t e r e s t  of simplicity, the 
example plant i s  a constant undamped 
harmonic osci l la tor .  I n  s p i t e  of i t s  
simplicity, it i l l u s t r a t e s  t he  regula- 
t o r ' s  usefulness on the class  of con- 
s t an t  neutrally s t ab le  systems subject 
t o  small disturbances. The symmetric 
spinning space vehicle i s  a member of 
t h i s  c lass  i n  which considerable 
i n t e r e s t  has been shown.4,5,6,7 

The vector-matrix equation i s  
writ ten 

where x1 is  the  displacement and x2 
i s  the velocity. The system i s  required 
t o  r u n  from to = 0 t o  ti = T. The 
control labi l i ty  matrix i s  then computed 
with t h e  r e s u l t  

r 1 

J T 1  
2 4  

- cos 2T - + - s i n  2T 

W(o,T) 
de f in i t e  f o r  a l l  T # # so t h e  system 
i s  controllable. 

may be shown t o  be posi t ive 

This norm i s  constant f o r  the f r ee  plant  
and i s  a good measure of t he  system per- 
turbation from equilibrium. Typically, 
neutral ly  s table  systems have constants 
of  f r ee  motion which may be expressed a s  
quadratic forms i n  the s t a t e  variables.  
One of these forms i s  often useful  a s  an 
e r ro r  c r i t e r ion .  

The energy constraint  i s  chosen a s  
half  the in t eg ra l  square energy by 
l e t t i n g  R = 1 which gives 

This completes the  problem statement. 
U s e  of equation ( 9 )  r e s u l t s  i n  the 
canonic d i f f e r e n t i a l  equations 

0 

-1 

0 

0 
- 

0 

0 

0 

-1 

The solution of ( 2 7 )  with t h e  appropriate 
terminal conditions r e s u l t s  i n  

Z( t ,T)  = 

cos(T - t )  -sin(T - t 

sin(T - t )  cos(T - t 
- 

To fur ther  simplify the  problem, 
only the terminal error  w i l l  be mini- 
mized and the A matrix w i l l  be t h e  
iden t i ty  matrix. 
c r i t e r ion  circular i n  nature 

This makes the e r ro r  



X"(t,T) = - 1 
A 

where 

:2A+T-t)cos(T-t)+ 1 2h sin(T-t) 

-( 2h+T-t) 
sin( T-t  ) 

2A 

Direct subst i tut ion of (28) and (29 )  
i n t o  (17) and (19) r e su l t s  i n  the  
optimal feedback control l a w  

sin2(T - t ) )x l  

+ (&(T - t)  + 1 

and the  

D = -  1 
2h2 

- - 1 sin(T - t )cos(T - 
2A 

D matrix 

- 1 

T s i n  2T sin% z - 4  - 2 

With the subst i tut ion of (29)  and (32) 
i n t o  (21),  the  B matrix i s  determined. 
E, T, and some point deslred t o  l i e  on 
the  control  act ivat ion hypersurface may 
now be chosen so that h may be 

(2h+T-t s in(  T-t ) 
2A 

1 
2h 2A 

cos(T-t) - - sin(T-t (2h+T-t) 

computed and the act ivat ion hypersurface 
determined. 

From X-'(o,T) and D, it i s  evident 
that with T an even multiple of n, B 
defines a c i rcu lar  hypersurface. This 
indicates  t h a t ,  i n  general, the  time of 
operation may be a vi ta l  parameter i n  
shaping the B-hypersurface. In  the  
example, however, a more general case has 
been chosen by se t t i ng  T = 10. Since 
the period of the osc i l l a to r ' s  free 
motion i s  2x, the control i s  therefore 
i n  operation f o r  more than one period. A 
displacement of 'j and a zero velocity was 
chosen ra ther  arbitrarily t o  be on the 
B-hypersurface. By using t h i s  point and 
(24) i n  equation ( b ) ,  the  minimum energy 
i s  found t o  be 2.62 uni ts .  
t h i s  problem was chosen as 2.5 un i t s  t o  
be within t h i s  l i m i t .  
then solved f o r  A. I ts  value w a s  0.115. 
The resu l t ing  B-hypersurface and 
D-hypersurface which a re  s l i gh t ly  e l l i p -  
t i c a l  are shown i n  f igure 1. 
t ra jec tory  during a control operation i s  
shown between the two hypersurfaces. The 
time his tory of t h i s  t ra jec tory  and i t s  
associated control a re  shown i n  figure 2. 

The energy i n  

Equation (20) was 

A t yp ica l  

CONCLUSIONS 

A special  family of hypersurfaces i n  
s t a t e  space has been ident i f ied  with the  
optimal l i nea r  regulator. It has been 
shown that on-line computation of the 
mult ipl ier  associated with the  control 
constraint  may be eliminated by choosing 
a member of t h i s  special  family as the  
regulator 's  act ivat ion c r i te r ion .  This 



' I  4. Suddath, J. H . ;  and Carney, T. M.: 
Technique f o r  Synthesis of Constant 
Linear Dynamical Systems With a 
Bang-Bang Controller. NASA TR R-200, 
1964. 

r e su l t s  i n  a r e l a t ive ly  simple optimal 
control system sui table  far repe t i t i ve  
operation. 
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Figure 2.- Typical t ra jectory and control t i m e  history.  
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